glicolisis

Es la vía metabólica encargada de oxidar la glucosa con la finalidad de obtener energía para la célula. Consiste en 10 reacciones enzimáticas consecutivas que convierten a la glucosa en dos moléculas de piruvato el cual es capaz de seguir otras vías metabólicas y así continuar entregando energía al organismo.
 
La glicolisis tiene lugar en el citoplasma y consiste en transformar una molecula de glucosa en dos moleculas compuesto por tres carbonos el acido piruvico.


fases de la glicolisis
PRIMERA FASE: ACTIVACIÓN E ISOMERIZACIÓN.

La glucosa es una molécula cuya carga energética alcanza a las 2260 kcal/mol. También es una molécula bastante estable, por lo cual lo primero que busca el proceso es desestabilizarla a través de un proceso de activación durante el cual se incrementa la energía contenida en la glucosa mediante un enlace fosfato transformándola en Fosfato-glucosa. Posteriormente esta fosfato-glucosa es transformada en un isómero de Fosfato-fructosa, el cual otra vez es activado al incrementar nuevamente su energía con otro enlace fosfato, formando así la DiFosfato-Fructosa, producto final de esta primera etapa.

SEGUNDA FASE: FRACCIONAMIENTO.

La DiFosfato-Fructosa es un compuesto mas inestable que la glucosa y se encuentra cargado de energía (a raíz de los enlaces fosfato), por lo cual se encuentra listo para fraccionarse.

La DiFosfato-Fructosa se fracciona por acción de la enzima aldolasa quedando como producto de esta ruptura dos compuestos de 3 carbonos y un fósforo cada uno: el FosfatoGlicerAldehido o PGAL y la FosfatoDiHidroxiAcetona o PDHA.

De estos dos compuestos de 3 carbonos, el único que puede pasar a la siguiente etapa es el PGAL, sin embargo por acción de la enzima isomerasa de triosa, el PDHA se transforma en PGAL. En resumen durante este proceso de fraccionamiento de una DiFosfato-Fructosa se producen dos PGAL que ingresan a la siguiente fase.

TERCERA FASE: RECUPERACIÓN DE ENERGÍA.

Hasta este momento, el proceso de glucólisis ha sido un "gasto" de energía proveniente del ATP para el organismo. Sin embargo a partir de ahora se recuperará "con intereses" la energía invertida en el proceso.

Los PGAL resultantes del fraccionamiento ingresan a un nuevo ciclo en el cual son oxidados (o sea liberan electrones) a través de una reducción de NAD en NADH, absorben Fósforo y reaccionan a través de la enzima SH. De esta forma se transforman en Difosfoglicerato (recuerde que el PGAL tenía ya un átomo de P) cuya molécula tiene un enlace fosfato energizado y otro enlace con P sin energía.

El Difosfoglicerato "cargado" de energía en su enlace fosfato, libera un P transformando una molécula de ADP en ATP, transformándose en Fosfoglicerato, molécula con un solo átomo de P pero que carece de un enlace fosfato energizado.

Entonces este Fosfoglicerato sufre un proceso de oxidación produciendo agua, gracias a esta oxidación su enlace de fósforo se transforma en enlace fosfato cargándose de energía, transformándose en Fosfopiruvato.

Este Fosfopiruvato libera su P energizado, para convertir una molécula de ADP en ATP a través de la enzima piruvatocinasa.
PIRUVATO
La piruvato quinasa (ATP: piruvato 5- O- fosfotransferasa; EC 2.7.1.40) cataliza la transformación de fosfoenolpiruvato y ADP en piruvato y ATP. Esta enzima, que aparece en todas las células vivas, es clave en la ruta central del metabolismo de los carbohidratos. En la especie humana han sido caracterizados dos genes diferentes: el PK-M que principalmente, codifica las isozimas del tejido musucular y de los leucocitos y la PK-LR que codifica las isozimas del hígado y de los eritrocitos. La deficiencia en piruvato quinasa, debido a una mutación en el gen PK-LR, origina alteraciones, únicamente, en el metabolismo de los eritrocitos, porque estas células no son capaces de compensar el defecto enzimático aumentando la síntesis de enzima mutada ni utilizar otras rutas degradativas.



FERMENTACION LACTICA

La fermentación láctica es una ruta metabólica anaeróbica que ocurre en el citosol de la célula, en la cual se oxida parcialmente la glucosa para obtener energía y donde el producto de desecho es el ácido láctico.
En condiciones de ausencia de oxígeno (anaerobias), la fermentación responde a la necesidad de la célula de generar la molécula de NAD+, que ha sido consumida en el proceso energético de la glucólisis. En la glucólisis la célula transforma y oxida la glucosa en un compuesto de tres átomos de carbono, el ácid pirúvico, obteniendo dos moléculas de ATP; sin embargo, en este proceso se emplean dos moléculas de NAD+ que actúan como receptores de electrones y se reducen a NADH. Para que puedan tener lugar las reacciones de la glucólisis productoras de energía es necesario reoxidar el NADH; esto se consigue mediante la cesión de dos electrones del NADH al ácido pirúvico, que se reduce a ácido láctico

 FERMENTACION ALCOHOLICA
La fermentación alcohólica es un proceso biológico de fermentación en plena ausencia de aire (oxígeno - O2), originado por la actividad de algunos microorganismos que procesan los hidratos de carbono (por regla general azúcares: como pueden ser por ejemplo la glucosa, la fructosa, la sacarosa, el almidón, etc.) para obtener como productos finales: un alcohol en forma de etanol (cuya fórmula química es: CH3-CH2-OH), dióxido de carbono (CO2) en forma de gas y unas moléculas de ATP que consumen los propios microorganismos en su metabolismo celular energético anaeróbico. El etanol resultante se emplea en la elaboración de algunas bebidas alcohólicas, tales como el vino, la cerveza a sidra, el cava, etc. Aunque en la actualidad se empieza a sintetizar también etanol mediante la fermentación a nivel industrial a gran escala para ser empleado como biocombustible.


 OXIDACION

en el medio anaerobico la molecula de piruvato se convierte en el producto se convierte en el producto de partida  de la ruta metabolica hace su aparicion como coenzimaque dan el producto final se produce en la mitocondria en medio de oxigeno

CICLO DE KREB

proteinas y enzimas

las enzimas son proteinas altemenre especializadas que tienen como fi¡uncion ser catlizadores para procesos quimicos en los seres vivos la estructura fundamental es la proteinaComo todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación (ΔG) de una reacción, de forma que se acelera sustancialmente la tasa de reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada.
 En las enzimas se puden identificar dos elementos que son el sustrato y el sitio activo
clacificacion enzematica:
- simples : formadas por uno o mas cadenas polipetidicas
- conyugadas tienen por lomenos un grupo no proteinico y tienen yna cadena polipeptidica
actividad enzematica: las enzimas pueden actuar de diversas formas para explicar  este proceso se utilizan modelos ezquematicoslos cuales buscan representar el actuar de la enzima

PROTEINAS Y AMINOACIDOS
Qué son los aminoácidos?
Son sustancias cristalinas, casi siempre de sabor dulce; tienen carácter ácido como propiedad básica y actividad óptica; químicamente son ácidos carbónicos con, por lo menos, un grupo amino por molécula. Veinte aminoácidos diferentes son los componentes esenciales de las proteínas. Aparte de éstos, se conocen otros que son componentes de las paredes celulares. Las plantas pueden sintetizar todos los aminoácidos, nuestro cuerpo solo sintetiza dieciséis aminoácidos, reciclando las células muertas a partir del conducto intestinal y catabolizando las proteínas dentro del propio cuerpo.
Como ya hemos dicho, los aminoácidos son las unidades elementales constitutivas de las moléculas denominadas proteínas. Son pues, haciendo un símil muy elemental, los "ladrillos" con los cuales el organismo reconstituye permanentemente sus proteínas específicas consumidas por la sola acción de vivir.
Las proteínas son los compuestos nitrogenados más abundantes del organismo, a la vez que el fundamento mismo de la vida. En efecto, debido a la gran variedad de proteínas existentes y como consecuencia de su estructura, las proteínas cumplen funciones sumamente diversas, participando en todos los procesos biológicos y constituyendo estructuras fundamentales en los seres vivos. De este modo, actúan acelerando reacciones químicas que de otro modo no podrían producirse en los tiempos necesarios para la vida (enzimas), transportando sustancias (como la hemoglobina de la sangre, que lleva oxígeno a los tejidos), cumpliendo funciones estructurales (como la queratina del pelo), sirviendo como reserva (albúmina de huevo), etc
Proteínas de origen vegetal o animal
Puesto que sólo asimilamos aminoácidos y no proteínas completas, el organismo no puede distinguir si estos aminoácidos provienen de proteínas de origen animal o vegetal. Comparando ambos tipos de proteínas podemos señalar:
- Las proteínas de origen animal son moléculas mucho más grandes y complejas, por lo que contienen mayor cantidad y diversidad de aminoácidos. En general, su valor biológico es mayor que las de origen vegetal. Como contrapartida son más difíciles de digerir, puesto que hay mayor número de enlaces entre aminoácidos por romper. Combinando adecuadamente las proteínas vegetales (legumbres con cereales o lácteos con cereales) se puede obtener un conjunto de aminoácidos equilibrado. Por ejemplo, las proteínas del arroz contienen todos los aminoácidos esenciales, pero son escasas en lisina. Si las combinamos con lentejas o garbanzos, abundantes en lisina, la calidad biológica y aporte proteico resultante es mayor que el de la mayoría de los productos de origen animal.
- Al tomar proteínas animales a partir de carnes, aves o pescados ingerimos también todos los desechos del metabolismo celular presentes en esos tejidos (amoniaco, ácido úrico, etc.), que el animal no pudo eliminar antes de ser sacrificado. Estos compuestos actúan como tóxicos en nuestro organismo. El metabolismo de los vegetales es distinto y no están presentes estos derivados nitrogenados. Los tóxicos de la carne se pueden evitar consumiendo las proteínas de origen animal a partir de huevos, leche y sus derivados. En cualquier caso, siempre serán preferibles los huevos y los lácteos a las carnes, pescados y aves. En este sentido, también preferiremos los pescados a las aves, y las aves a las carnes rojas o de cerdo.
- La proteína animal suele ir acompañada de grasas de origen animal, en su mayor parte saturadas. Se ha demostrado que un elevado aporte de ácidos grasos saturados aumenta el riesgo de padecer enfermedades cardiovasculares.
- En general, se recomienda que una tercera parte de las proteínas que comamos sean de origen animal, pero es perfectamente posible estar bien nutrido sólo con proteínas vegetales. Eso sí, teniendo la precaución de combinar estos alimentos en función de sus aminoácidos limitantes. El problema de las dietas vegetarianas en occidente suele estar más bien en el déficit de algunas vitaminas, como la B12, o de minerales, como el hierro.

carbohidratos

Los carbohidratos, también llamados glúcidos, se pueden encontrar casi de manera exclusiva en alimentos de origen vegetal. Constituyen uno de los tres principales grupos químicos que forman la materia orgánica junto con las grasas y las proteínas Los carbohidratos son los compuestos orgánicos más abundantes de la biosfera y a su vez los más diversos. Normalmente se los encuentra en las partes estructurales de los vegetales y también en los tejidos animales, como glucosa o glucógeno. Estos sirven como fuente de energía para todas las actividades celulares vitales.
Aportan 4 kcal/gramo al igual que las proteínas y son considerados macro nutrientes energéticos al igual que las grasas. Los podemos encontrar en una innumerable cantidad y variedad de alimentos y cumplen un rol muy importante en el metabolismo. Por eso deben tener una muy importante presencia de nuestra alimentación diaria

Funciones
Las funciones que los glúcidos cumplen en el organismo son, energéticas, de ahorro de proteínas, regulan el metabolismo de las grasas y estructural.

  • Energeticamente, los carbohidratos aportan 4 KCal (kilocalorías) por gramo de peso seco. Esto es, sin considerar el contenido de agua que pueda tener el alimento en el cual se encuentra el carbohidrato. Cubiertas las necesidades energéticas, una pequeña parte se almacena en el hígado y músculos como glucógeno (normalmente no más de 0,5% del peso del individuo), el resto se transforma en grasas y se acumula en el organismo como tejido adiposo.
    Se suele recomendar que minimamente se efectúe una ingesta diaria de 100 gramos de hidratos de carbono para mantener los procesos metabólicos.
  • Ahorro de proteínas: Si el aporte de carbohidratos es insuficiente, se utilizarán las proteínas para fines energéticos, relegando su función plástica.
  • Regulación del metabolismo de las grasas: En caso de ingestión deficiente de carbohidratos, las grasas se metabolizan anormalmente acumulándose en el organismo cuerpos cetónicos, que son productos intermedios de este metabolismo provocando así problemas (cetosis).
  • Estructuralmente, los carbohidratos constituyen una porción pequeña del peso y estructura del organismo, pero de cualquier manera, no debe excluirse esta función de la lista, por mínimo que sea su indispensable aporte.